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A methad is presented for the easy generation for all values of n of the
Goldstone diagrams which represent the n body equation of the
coupled cluster method. A static, finite system of fermions describable
by a single-reference state is cangidered in full detail and in this case a
sinie polynominl expression is obtained for the number of diagrams
contributing to the » body equation. This expression goes Tike n7/12
for large n. Applications to other classes of system are also considered.
T 1993 Academic Press, Inc.

I. INTRODUCTION

This paper is coticerned with the coupled cluster method
{CCM) of guantum many-body theory. This, together with
the extended coupled cluster method (ECCM 3, has by now
achicved 2 high level of theoretical development and a
wide range of applications in many areas of physics and
chemistry. References [1, 2] are recent reviews of the
subject.

As is well known, the CCM is based on the ansatz [¥) =
cxp(S) |9, where | ¥) is the true, interacting ground state
of the system and S is the sum of a series of cluster operators
S,. which represent the amplitudes for the excitation of
n-particle clusters out of some initially defined model state
{@ 5. The value of # runs from one up to the number of par-
ticles in the system. {& is normally taken to be some state
of the system for which all or part of the interaction has been
turned ofl. For example, the problem ofliquid *e is usually
studicd using o zero momentum Bose condensate as the
model stale. The CCM achieves a microscopic decomposi-
tion of the Schrédinger equation into a set of non-inear,
coupled equations for the §,. Once these have been solved,
the §, are substituted into an expression for the energy
which the formalism alse produces. The method can be
established in a purely algebraic fashion, but it is also
possible to interpret it completely in terms of the Goldstone
diagrams of many-body perturbation theory. The CCM has
two important advantages over rival methods, The first is
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that it displays the linked cluster theorem at all levels of
truncation. This means that 1t generates no unlinked
Goldstone diagrams and so it produces energies which scale
like the number of particles. The second is that it actually
has a well-defined truncation scheme in the first place,
which is an essenlial requirernent for practical applications,
This is called the SUB# scheme and is defined by setting
S,, =0 for m> n Ut sums well-defined, infinite sets of many-
body perturbation theory (MBPT) Goidstone diagrams,
which increase in size for increasing #. This eliminates the
problem of knowing which is the next most important set of
diagrams to sum. The working equations used for computa-
tions by the present authors are written and solved directly
in terms of a finite set of CCM Goldstone diagrams. These
feature symbols representing both the S, amplitudes and the
interaction potentials, It is possible in principle to perform
a recursion on this set and so obtain the infinite set of
MBET Goldstone diagrams, which feature symbaols only
for the interaction potentials that a particular equation
represents.

The process of deriving the CCM equations algebraically
is straightforward but tedious and requires prohibitively
large atmounts of work even for relatively small values of n
in the SUB#» scheme. In such cases it is usual to fall back
upon the diagrammatic description of the CCM. Because
each term in the algebraic equations is associated with a
CCM Goldstone diagram, it is possible to proceed via a
two-stage process, viz.,

(1) Draw all permitted dizgrams for the s body
cquation in SUB# for all values »r and » of interest.

{2) Write down the corresponding algebraic equations
and/or encode the diagrams directly inte a computer
program.

The second step is easy io automale given the proper
sofiware and at least one prescription [3] exists in the
literature for the automation of the first step. The purpose of
the present paper is to present another such prescription,
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one which has the virtue of great simplicity. Several other
papers have appeared which are concerned with the
automatic generation of diagrams, but these are confined to
MBPT [4-7].

To summarise the remainder of the present paper,
Section 2 gives a brief account of the conventionai deriva-
tion of the CCM equations, followed by the alternative
derivation of Arponen [8] which is the jumping off point of
the diagrammatic analysis. Quantum chemical calculations
are the main interest of the present authors, so in Section 3
we give in full the prescription for writing down the a-body
equation for a static, single-reference state, finite fermionic
system. A by-product of this is the derivation of a simple
polynomial expression for N{n), the number of CCM
Goldstone diagrams on the RHS of the n-body equation.
Section 4 indicates how classes of systems other than that in
Section 3 may be treated. It also features remarks on the
difficulty encountered in attempting to extend the present
method to the ECCM. Section 5 is the conciusion.

2, DERIVATIONS OF THE CCM EQUATIONS

The usual starting point for the derivation of the CCM
equations 13 the N-particle, time-independent Schrodinger
cquation

H|V,=E¥) (1)

and the exp(S) ansatz

|5 =exp(5) @)

which was described in the Introduction. The operator §
may be expressed in the rather generalised form

§=28.C1 (3)

where the configuration creation operators C| create an i
particle configuration with respect to the model state. They
are each composed of a string of single particle creation
operators and the suffix i is not necessarily an integer but
rather a shorthand notation for the set of particles created.
The C; configuration destruction operators are defined
analogously. It is now assumed that ail bra and ket states of
the many-body Hilbert space can be reached by an
approptiate superposition of the states C! (@5 and (@] C..
[t is further assumed that {(@{ C;C |®) may be written as
8(7, /), where the latter is a notational kronecker delta
which is 1o be understood in a set-theoretical sense and that
some form of Wick's theorem exists for use on operators
arranged in normal order.
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Assuming that {@!d&} is normalised to one we use (1)
and (2) to obtain trivially

(@) e HeS @) =E (4)

for the energy and

(D Cie” He® |y =0 (5)
for the S, operators. Making use of the well-known
commutator expansion

e-SAeS=A+[A,S]+%[[A,S],S]+ (6)

which terminates after a finite number of terms for 4 = H,
we can perform the requisite expansions and obtain
algebraic equations for E and the §..

We now describe Arponen’s alternative derivation [§] of
the CCM equations. In his seminal work on the ECCM, he
defines the expectation value of an arbitrary operator as

Fa= (P Qe 4e% | @) (7)
and hence a new ¢nergy functional,
Fu=Frt+ o= P| Qe He® | P, (8)

where #r and #, are the kinetic and potential energy
expectation values, respectively, and

Q=1+ C.Q, (9)

Note that @ is composed entirely of destruction operators
with respect to the model state. Assuming that the kinetic
energy operator is diagonal, it can be shown that

fr=ZI,-S,-.Q,-+T0, (10)

where 1, is the kinetic energy of the state C'! |@ ) relative to
|#> and T, is the kinetic energy of the model state. By
requiring the stability of ¢, against all variations of 2, and
§; we obtain

_ 1o
Sf__rf.cSQ, (1)
and
_ 164
Q= t; 48, (12)
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which are known as the Dyson equations because of their
similar appearance to the equation of the same name from
quantom field theory. It is now possible to use (8), (11), and
{12) to re-derive the algbraic form of the CCM equations,
provided that use is made of the result that the £2, make a
zero contribution to the expectation value (7) in the case
A=H.

3. DIAGRAMMATIC PRESCRIPTION

We confine ourselves in this seclion to a static, finite
system of fermions describable by a single reference state
|@ . Extensions to other classes of system are considered in
Section 4.

We begin by making use of the fact [8] that ¢ can be
expressed as the sum of the Hugenholtz “skeleton” diagrams
given in Fig. 1. The empty circles are one- and two-body
interaction operators and the filled circles are the S,
amplitudes themselves. The boxes are the £2; amplitudes.
The functional differentiation required by {11) now involves
no more than the removal in all possible ways of the Q,
boxes from each diagram. Thus, the single Q; amplitude
appearing in each of the labelled diagrams in Fig. 1
is removed and the unlabelled diagrams are deleted
altogether. Figure 2 shows the resultant general equation
for 5, abbreviated in an obvious manner. A cross upon a line
indicates the possibility of further lines emerging from the
same amplitude. In some cases, for example, L, N, Q and the
term on the RHS of Fig. 2, it is actually necessary to add
further lines in order to obtain a legitimate contribution to
the equation of interest. Not all diagrams contribute to all
equations. For example, 4 contributes only to the one-body
equation and E only to the two-body equation. All terms in
an equation must have an equal, even number of open lines,
This may be achieved by replacing a line marked by a cross
with an appropriate number of lines. If this cannot be done
for a diagram, then that diagram does not contribute.

The basic idea is now straightforward. First, all of
the objects in Fig. 2 are expanded in order to produce a
set of “nucleus” diagrams. Then, “accreted” diagrams are
generated from each nucleus diagram. This is done for a
particular nucleus diagram by first defining an “available”
amplitude to be one with at least one line not linked to the
interaction. Accreted diagrams are then generated by
adding extra vertices in all possible distinct ways to the
available amplitudes, such that the accreted diagrams have
the requisite number of vertices for whatever n-body
equation is currently of interest. For example, diagram Fin
Fig. 2 is expanded to produce the two nucleus diagrams in
Fig. 3a, and these contribute ta the two-body equation. By
the addition of n—2 extra vertices, each of these two
nucleus diagrams will generate a contribution to all higher
n-body equations of exactly one accreted diagram, as
illustrated in Figs. 3b and c for the cases n=3 and n=17.
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FIG. 1. The equation for ¢, expressed in terms of Hugenholtz
skeletons, A cross upon a line indicates the possibility and/or necessity of
further lines emerging from the same amplitude. For further explanation of
symbols, see text.

There is a further illustration of this process in Fig. 4. In
Figs. 3-6, the open circle and the horizontal dashed line are
one- and two-body interaction operators, respectively; the
filled-in circle is now an 5, amplitude; and a horizontal solid
line from which » particle hole excitations emerge is an S,

Vg PAY

FIG. 2. The gencral equation for 8, obtained from Fig, | by functional
differentiation with respect to @ and written: in an abbreviated form.
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FI1G. 3. Contribution of diagram F(Figs. 1 and 2) to: (a) the two-body
equation; (b) the three-body equation; and (c) the seven-body equation.

amplitude. As higher and higher values of n are considered,
the accreted diagrams will come to have the appearance
of long homogeneous strings of vertices interrupted by
occasional bursts of inhomogeneity resuiting from the
nucleus diagrams. There is no danger of overcounting,
because the original Hugenholtz skeletons are all distinct
and this cannot be altered by the subsequent addition of
extra vertices. The full set of nucleus diagrams is given in
Fig. 5. The nucleus and accreted diagrams form a pair of
compiementary subsets of the totality of CCM diagrams.
The former is finite, having 74 members, and the latter is
infinite.

The various r-body equations and their respective values
of the function N(n) are now considered in turn. N(n) is
defined as the number of diagrams on the RHS of the
n-body equation. The one-body equation is a special case,
being the only one to consist entirely of nucleus diagrams.
There are 30 of these which can contribute, so

N(1) = 30. (13)
The two-body equation is also a special case, being the only
one to consist of hoth nucleus and accreted diagrams. There
are 44 and 34 of these, respectively, and so

N(2)=T18. (14)

Hereafter, «ll equations consist entirely of accreted

FIG. 4. Contribution of (a) diagram {1 and (b} diagram I3 (Fig. 5) to
the four-body equation.
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TABLE I

Numbers of Accreted Diagrams Contributing to
the n-body Equation, n=3

Number Corresponding nucleus diagrams

A, EG1,G2

1 Bl, B2, C1,C2, F1, F2, H1-Hb,
J1-J6, K1-K4, N1-N5, P1-P4

n D, 01,02, 04,05 R, R2

n—1 11,12, L1-L10, O3, 06, 03, @5, @7

nf2, » even, 13, 14,01, 02, 04, Q6

(n—1)/2, n odd

n(n—1)/2 M1, M2, 51-54

n%/4, n even; 55, 56

(n?—1)/4, n odd
nin+2)(n—2)124+nj2, neven, T
nln+ 10r—-1)/12, n odd

diagrams. In Tablel are listed the numbers of these
generated by each nucleus diagram for » = 3. The summa-
tion of these contributions is a trivial matter and the answer
is

N(n)=(Tn* +48n+ 28)/2 + [n/2+ n(n+ 2)(n — 2)/12]

(n= 3 and even), {15a)
=(Mn? +48n+21)2 + [n(n+ 1)(n—1)/12]
{n =3 and odd). (15b)

It now remains to prove that the various functions of n
given in Table I are correct. The zero written against A, E,
(71, and 2 indicates that they generate no contribution for
n 3. This is because they have no available amplitudes. As
for the remainder, it is first necessary to consider the
problem of the number of distinct arrangements of p addi-
tional vertices among g distinguishable amplitudes. Table 11
lists these results for | < ¢< 3. Thecases g=1and g=2 are
straightforward, but g =3 is slightly more difficult. In this
case, m of the p additional vertices are allocated to one
particular amplitude and the other p—m are shared
between the other two amplitudes for 0 < m < p. Therefore,
employing the result for ¢ =2, the resuit for ¢ = 3 is given by

1=

(p—m+1)=(p+1)p+2)2 (16)

0

m

TABLEIl

Number of Distinct Ways of Adding p Vertices to
g Distinguishable Amplitudes

Number

-

t 1
p+1
3 (r+Dip+232
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If the p additional vertices are added to two indistinguishable
amplitudes then the number of distinct arrangements is
given by f,(p), where
Lpy=Int{p/2+1) {17)
The only functions of # in Table I that are unaccounted
for by Table 11 and Eq. (17) are those belonging to S5, S6,
and T. The first two each have three avaiiable amplitudes,
two of which are indistinguishable, Using (17), the number

of distinct ways of adding the p additional vertices is
therefore given by

Y fikm)y=(p+1)p+3)4,  peven  (18a)
m={

={p+2)*/4, podd.  (18b)
Finally, there is nucleus diagram 7, which is slightly
tricky. Its contribution, f-( p), will first be stated and then

explained,

Jrp)= 3 filmip~m+1)

m=0

+ 5 [—(p—mt )4 folp—m)] (19)

m=0
meven

Diagram T has four .5, amplitudes, of which two are
connected to the potential by particle lines and two by
hole lines. These are dubbed the particle and the hole
amplitudes, respectively. Of the p additional vertices, m are
allocated to the particle amplitudes and p — 1 to the hole
amplitudes for all 0 <m < p. The particle amplitudes are
initially indistinguishable and so there are f5(m) distinct
arrangements of their m allocated vertices. However, the
addition of these vertices causes the hole amplitudes to
become distinguishable in general, As a result, this f,(m)
must be multiplied by a factor of {p - m -+ 1} for the distinct
arrangements of the p—m vertices allocated to the hole
amplitudes, see Table I. This explains the lirst term in (19).
The tricky part is caused by the cases when m is even, in
which there is one arrangement of the m vertices allocated
to the particle amplitude such that the hole amplitudes
become indisringuishable. It is then necessary to subtract off
one of the terms (p —m + 1), which is appropriate to dis-
tinguishable amplitudes, and replace it by a term f,{p ~ m),
which is appropriate to indistinguishable amplitudes. This is
illustrated by Fig. 6, which is the contribution of T to the
five-body equation. The summations on the RHS of (19)
can easily be executed.

It is important to realise that the expressions in Table I1
and Eqgs. (17)-(19) are given in terms of p, the number of
vertices to be added to a given nucleus diagram. However,
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FIG. 6. Contribution of diagram T (Fig. 5) to the five-body equation.

the nucleus diagrams alli have either one or two pairs
of uncontracted lines to begin with. Therefore, when
evaluating expressions for the #-body equation, p must be
substituted in all cases with n — 1 or n -2 as appropriate.

It should be noted that the expression N(n) for the
number of diagrams contributing to the s-body equation
goes like n*/12 for large », and that the #°/12 contribution
1s generated solely by nucleus diagram T.

4. FURTHER EXTENSIONS

In view of Eqgs.(7) and (12) and Fig. 1, it might be
thought that the derivation of a set of diagrammatic
equations for the £2; should be attempted, thus enabling the
calculation of the expectation values of an arbitrary
operator. However, it is well known that the eguations
for the 2, are unlinked in general and that this problem
is avoided only when the energy expectation value is
calculated, in which case it can be shown that, as already
stated, the £2; make a zero contribution. In particuiar, the
removal of the § amplitude of Fig. IN at once yields an
untinked diagram for £2. This problem is solved by the
ECCM [$] in which the diagrammatic expression for ¢, is
obtained by resolving the £2, boxes into a set of upper, de-
excitation amplitudes and preserving only those diagrams
which satisfy the so-called double linking requirements, viz.,
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{1} From each lower, excitation amplitude {(now called
a,) at least one line is connected to the interaction.

(2) Every upper, de-excitation amplitude {now called
#,) must be comnected to the interaction and/or have
connections to at least two o, amplitudes.

This prescription ensures a properly linked description of an
arbitrary operator. The ECCM Dyson equations, <f. (11)
and (12},

1 &9,
= 2k 0
! t; 64, (20)
and
1 &7,
= — 2
=T e (21)

can now be used in principle to obtain equations for &, and
&, written in terms of ECCM Goldstone diagrams. In prac-
tice, however, there are considerable difficuities impeding an
analysis of the ECCM, analogous to that of Section 3. If
there is only one ¢ or one & amplitude in a given ECCM
nuclens diagram, then the functional differentiation reduces
the diagram to ane which is of similar difficulty to the
“normal” CCM (NCCM). However, if this is not the case
then the combinatorics of the lines linking the multiple o,
and &; amplitudes appear to preclude such an easy scheme
as has been obtained for the NCCM. Furthermore, the
ECCM analogue of Fig. 2T causes violent proliferation of
diagrams even for so crude an approximation as CCD, that
i5, in which §,=0forall n£2.

The prescription given in Section 3 is designed for a static,
finite, single-reference state fermionic system. However, it is
very easy to use these diagrams to obtain those for an open
shell system, which will in general require multiple reference
states. If there are m particles added to the closed shell, then
bend down m hole lines in all possible ways for each
diagram in order to form valence particle lines. A similar
rule holds for particles deleted from a closed sheil state. 1t
then remains only to draw the so-calied folded diagrams
which are few in number and easy to write down by inspee-
tion. For further details, see Ref, [9]). The dynamic case may
also be treated and Arponen gives rules for doing this,

Application to a system of bosons in the thermodynamic
itmit is also possibie. Essentially, this invoives the deletion
of all diagrams featuring an S, amplitude (because S, #0
violates momentum conservation in this case) and also all
diagrams which can be obtained from other diagrams by an
exchange of hole lines (because all holes are equivalent and
so the same physical process is described). Although for
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small 7t is well known that N ,(n) » Npoeln), for large n
the same #°/12 limit is recovered. The culprit is once again
diagram T of Fig. 6. Although in the bosonic case it makes
its first appearance only in the six-body equation, thereafter
the pattern of additional vertices is the same as for the
fermionic equations, except that it starts four equations
later in the hierarchy.

5. CONCLUSION

A method bas been presented for the easy automatic
generation of the diagrams representing the equations for all
the CCM cluster amplitudes S, in the case of static, single-
reference state fermionic systems. This has been achieved by
defining a set of “nucleus™ diagrams from which all other
diagrams can be obtained in a straightforward manner by
means of the addition of extra vertices to the cluster
amplitudes. It will readily be seen that a program for the
automatic generation of diagrams will need only to store the
nucleus diagrams and thereafter consist of at most a few
simple nested DO loops for each diagram. A simple poly-
nomial expresston for N(r), the number of diagrams on the
RHS of the n-body equation, has also been obtained and
this goes like #*/12 for large N, this contribution coming
entirely from just one of the nucleus diagrams. Application
of the same method to other classes of systems has been
sketched. In particular, we have obtained the perhaps rather
surprnising result that for large #, N{») has the same limit for
a thermodynamic system of bosons as for a finite system of
fermions.
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